Context
The hyperoxidation of oils ( long chain fatty acids) is a technique used for decades in the pharmaceutical world. There are sundry final products for the bedsores prevention or skin cicatrization that use this type of raw materials in their formulations with very positive results 1 ,2,3,4,5,6,7,8 The same procedure is also carried out with ozone, instead of using oxygen, obtaining positive results in healing and also in disinfection 10, 9,11,12,13
Analysis
What happens when the hydroperoxidation process is carried out with Ozone?
The difference between Oxygen (O2) and Ozone (O3) is a negative oxygen atom, which gives the last named wide disinfectant properties that O2 doesn ́t have. 10,14,15 This affects the physicochemical properties of both molecules, Ozone weights more (that's why it falls from the atmosphere and clean it at the same time), it is more oxidant (its oxidation index is 2.07 versus Oxygen which is 1.23) and it is also more unstable (it tends to give up the negative oxygen atom easily). In fact, this last situation leads us to the most interesting thing about these molecules: their liposolubility (it refers to the ability of being dissolved in lipids). In this sense, Ozone has a greater capacity; It is approximately 10 times more soluble than oxygen. 16 Due to this capacity, the level of reaction and the peroxidation index is higher in oils peroxidized with ozone, since ozone reacts with the double bounds of fatty acids present in vegetable oils, especially forming ozonides (1,2,4-trioxolanes) and peroxides such as hydroperoxides, polymer peroxides and other organic peroxides. 17,18
The oxidation effect defalls in the production of an ozonated oil, the question is: What happens when this ozonated-oxidized vegetable oil comes into contact with other lipids and biologically active substances? We are talking about a similar effect, but by direct contact, by transferring among biological materials, namely the “surface oxidant” effect is not carried out. Compounds derived from ozonitation are highly loaded with oxygen molecules, which “oxygenate” the cell, and negative Oxygen free radicals, which react, destabilizing the membrane balance of few evolved cells and of lipids and structural proteins in case of viruses and fungi. The same happens with its ability to diffuse and penetrate tissues, when ozone comes into contact with a biologically active tissue, it immediately reacts with numerous biomolecules that together form true antioxidant buffer systems. 16
Additionally, to validate the thesis, the internationally established toxicity tests have been positively evaluated (oral and intraperitoneal LD50, ophthalmic irritation, sensitization, phototoxicity, mutagenicity, teratogenicity, etc.).19,20 For this to happen this way, the quality and process used in the hyperoxidation of the oils is important; To characterize ozonated oils, it is essential to know the physicochemical properties. Analytical techniques should be used to determine the quality of vegetable oils and ozonated products. 18
Conclusions
The lack of toxicity and its positive effects on the cicatrization, regeneration, antisepsis and antioxidation of the epithelial seem to indicate that the effect is oxygenating and destabilizing the cellular osmotic balance in a few evolved cells, as well in the breakdown and destabilization of lipids and structural proteins in viruses and fungi; for this reason we are talking about an oxygenating effect and a direct oxidation reaction of membrane lipids, and what is more interesting, maintaining the viability and healthy spectrum of the bacterial flora in the area to be treated. 21
Juan FERNÁNDEZ
Biologist and CEO of KeyBiological
www.KeyBiological.com
Bibliographic references
1. Torra i Bou JE, Segovia Gómez T, Verdú Soriano J, Nolasco Bonmatí A, Rueda López J, Arboix i Perejamo M. The effectiveness of a hyperoxygenated fatty acid compound in preventing pressure ulcers. J Wound Care. 2005 Mar;14(3):117-21. doi: 10.12968/jowc.2005.14.3.26752. PMID: 15779642.
2. Nadal MJ, García Rey J. Los ácidos grasos hiperoxigenados de última generación. Un producto a tener muy en cuenta en la prevención de úlceras por presión [Last generation hyperoxygenated fatty acids. A product to keep in mind in pressure ulcer prevention]. Rev Enferm. 2004 Jun;27(6):74-5. Spanish. PMID: 15315103.
3. Postigo Mota S, Muñoz Bermejo L, López Herranz M, Castilla Fernández V, Píriz Campos RM, López Corral JC. Acidos grasos hiperoxigenados [Hyperoxygenated fatty acids]. Rev Enferm. 2011 Feb;34(2):54; quiz 55. Spanish. PMID: 21495390.
4. Segovia Gómez T, Bermejo Martínez M, Molina Silva R, Rueda López J, Torra i Bou JE. Cuidado de la piel y úlceras por presión. Los ácidos grasos hiperoxigenados en la prevención de UPP y el tratamiento de lesiones de estadio I [Skin care and pressure ulcer. Hyperoxygenated fatty acids in the prevention of pressure ulcers and treatment of stage I lesions]. Rev Enferm. 2001 Sep;24(9):18-22. Spanish. PMID: 12150123.
5. Verdú Soriano J, López Casanaova P, Fuentes Pagés G, Torra i Bou JE. Prevención de UPP en talones. Impacto clínico y económico en una unidad de medicina interna [Prevention of pressure ulcers in heels]. Rev Enferm. 2004 Sep;27(9):60-4. Spanish. PMID: 15526580.
6. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015 Jun 5;97:55-74. doi: 10.1016/j.ejmech.2015.04.040. Epub 2015 Apr 22. PMID: 25942353.
7. Torra i Bou JE, Rueda López J, Segovia Gómez T, Bermejo Martínez M. Aplicación tópica de un compuesto de ácidos grasos hiperoxigenados. Efectos preventivos y curativos en úlceras por presión [Topical administration of an hyperoxygenated fatty acid compound. Preventive and curative effects on pressure ulcer]. Rev Enferm. 2003 Jan;26(1):54-61. Spanish. PMID: 14502907.
8. Maicas VT, Rochina IJ. Emulsión de ácido linoleico sobre la piel perilesional de úlceras venosas. Acción y efecto cicatricial. Estudio corpus [Linoleic acid emulsion on the peri-lesion skin of venal ulcers. Action and cicatrizant effect. Corpus study]. Rev Enferm. 2008 Apr;31(4):26-32. Spanish. PMID: 18564784.
9. Solovăstru LG, Stîncanu A, De Ascentii A, Capparé G, Mattana P, Vâţă D. Randomized, controlled study of innovative spray formulation containing ozonated oil and α-bisabolol in the topical treatment of chronic venous leg ulcers. Adv Skin Wound Care. 2015 Sep;28(9):406-9. doi: 10.1097/01.ASW.0000470155.29821.ed. PMID: 26280699.
10. Valacchi G, Fortino V, Bocci V. The dual action of ozone on the skin. Br J Dermatol. 2005 Dec;153(6):1096-100. doi: 10.1111/j.1365-2133.2005.06939.x. PMID: 16307642.
11. Anzolin AP, da Silveira-Kaross NL, Bertol CD. Ozonated oil in wound healing: what has already been proven? Med Gas Res. 2020 Jan-Mar;10(1):54-59. doi: 10.4103/2045-9912.279985. PMID: 32189671.
12. Zamora Rodríguez ZB, González Alvarez R, Guanche D, Merino N, Hernández Rosales F, Menéndez Cepero S, Alonso González Y, Schulz S. Antioxidant mechanism is involved in the gastroprotective effects of ozonized sunflower oil in ethanol-induced ulcers in rats. Mediators Inflamm. 2007;2007:65873. doi: 10.1155/2007/65873. Epub 2007 Jan 18. PMID: 17497036; PMCID: PMC1804299.
13. Zanardi I, Burgassi S, Paccagnini E, Gentile M, Bocci V, Travagli V. What is the best strategy for enhancing the effects of topically applied ozonated oils in cutaneous infections? Biomed Res Int. 2013;2013:702949. doi: 10.1155/2013/702949. Epub 2013 Oct 27. PMID: 24282818; PMCID: PMC3825054.
14. Ugazio E, Tullio V, Binello A, Tagliapietra S, Dosio F. Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques. Molecules. 2020 Jan 14;25(2):334. doi: 10.3390/molecules25020334. PMID: 31947580; PMCID: PMC7024311.
15. Silva V, Peirone C, Amaral JS, Capita R, Alonso-Calleja C, Marques-Magallanes JA, Martins Â, Carvalho Á, Maltez L, Pereira JE, Capelo JL, Igrejas G, Poeta P. High Efficacy of Ozonated Oils on the Removal of Biofilms Produced by Methicillin-Resistant Staphylococcus aureus (MRSA) from Infected Diabetic Foot Ulcers. Molecules. 2020 Aug 7;25(16):3601. doi: 10.3390/molecules25163601. PMID: 32784722; PMCID: PMC7464232.
16. Tylicki L, Nieweglowski T, Biedunkiewicz B, et al. The influence of ozonated autohemotherapy on oxidative stress in hemodialyzed patients with atherosclerotic ischemia of lower limbs. Int J Artif Organs 2003;26:297-303.
17. De Almeida NR, Beatriz A, Micheletti AC, de Arruda EJ. Ozonized vegetable oils and therapeutic properties: A review. Electron J Chem. 2012;4:313-326.
18. Zanardi I, Travagli V, Gabbrielli A, Chiasserini L, Bocci V. Physico-chemical characterization of sesame oil derivatives. Lipids. 2008;43:877-886.
19. Rodríguez MD, Menéndez S, Gómez M. Estudio teratogénico del aceite ozonizado. Primer Congreso Iberolatinoamericano de Aplicaciones del Ozono, CNIC-CI-MEQ, 31 de Octubre 3 de Noviembre, 1990.
20. Gómez M, Contreras R, Menéndez S. Efecto de la sustitución del aceite de oliva por aceite de girasol sobre la actividad antimicrobiana de aceites ozonizados. I Conferencia Nacional de Aplicaciones del Ozono, CNIC, 9 y 10 de Diciembre de 1988. Revista CENIC Ciencias Químicas 1999; 20(1):121.
21. Zeng J, Dou J, Gao L, Xiang Y, Huang J, Ding S, Chen J, Zeng Q, Luo Z, Tan W, Lu J. Topical ozone therapy restores microbiome diversity in atopic dermatitis. Int Immunopharmacol. 2020 Mar;80:106191. doi: 10.1016/j.intimp.2020.106191. Epub 2020 Jan 24. PMID: 31986325.